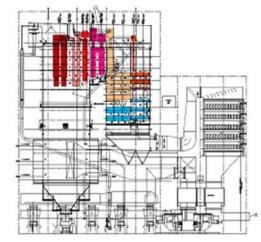
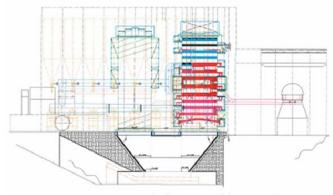

Update on the Techno-Economic Viability of AUSC Systems

Travis Shultz

Energy Process and Analysis Team Systems Engineering & Analysis Directorate




Outline

- Objectives
- PC (steam Rankine cycle) Plants
 - Evaluation Basis
 - Case Matrix
 - Process Flow Diagram
 - Results
 - Summary
- sCO₂ (recompression Brayton cycle)Plants
 - Overview
 - Evaluation Basis
 - Case Matrix
 - Process Flow Diagram
 - Results
 - Summary
- Cost and Efficiency Summary

Conventional Boiler

Downdraft Inverted Tower Boiler*

Objectives

- Conduct assessments of advanced material-enabled coal-fueled power plants
 - Advanced ultrasupercritical (AUSC) Rankine-cycle-based pulverized coal (PC) plants
 - Supercritical carbon dioxide (sCO₂) oxy-circulating fluidized bed (CFB) plants
- Thermodynamic and economic analyses
 - Analyses follow NETL Quality Guidelines for Energy Systems Studies (QGESS)
 - Cost estimates developed at same detail level as NETL's <u>Cost and Performance Baseline for Fossil Energy Plants</u> report series; in particular, <u>Volume 1, Bituminous Coal and Natural Gas to Electricity</u> (the "Bituminous Baseline")
 - Bituminous Coal (Illinois #6), generic Midwestern location, ISO ambient conditions
 - Estimated emissions of Hg, PM, NOx, and SO₂ are all at or below the applicable regulatory limits at the time of preparation for all cases
 - 2011 \$
 - 85% capacity factor
 - CCS cases include transport and storage (T&S) in a saline formation
 - Incorporated results from the literature and in consultation with developers for advanced technologies

Evaluation Basis - PC Plants

NATIONAL ENERGY TECHNOLOGY LABORATORY

Thermodynamic Performance

- ASPEN Plus models
 - Based on NETL Bituminous Baseline supercritical PC (SC PC) cases B12A (no CCS) and B12B (with CCS)
 - NETL supercritical steam conditions 3500 psig/1100°F/1100°F
- 550MW net scale
- Reliant upon a notional downdraft inverted tower boiler (B&W)
- AUSC conditions for temperature/pressure
 - T HP: 1350°F, RH: 1400°F
 - P HP: 3500, 4250, 5000 psig

Evaluation Basis - PC Plants

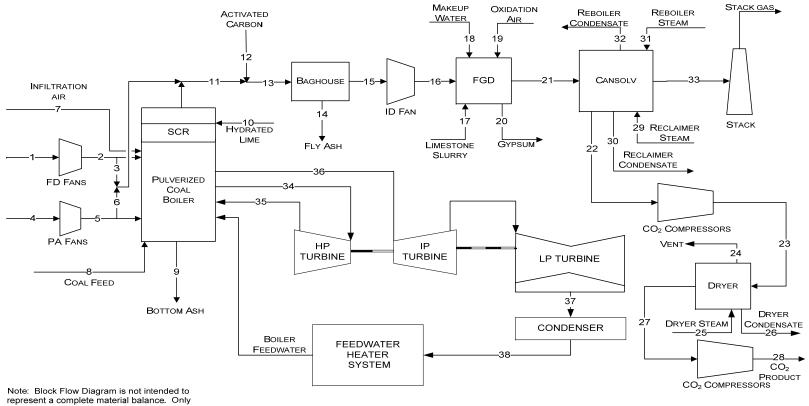
National ENERGY TECHNOLOGY LABORATORY

Economics

- Scaling from Bituminous Baseline SC PC cases B12A and B12B for commercial and post-combustion capture technology sections
- Components requiring advanced materials and/or novel designs
 - Notional downdraft inverted tower boiler
 - Information/discussions with B&W
 - Previous NETL study
 - Main and reheat steam leads
 - Use of aforementioned boiler reduces lead lengths from ~450 ft found in conventional boiler designs to ~160 ft
 - Assumed \$40/lb for Inconel 740H pipe
 - Steam turbine generator (STG) and accessories
 - AUSC Consortium data (EPRI/GE)

Case Matrix - PC Plants

Case	Unit Cycle	Steam Cycle, psig/°F/°F	Boiler Technology	Oxidant	Sulfur Removal/ Recovery	PM Control	NOx Control	CO ₂ Separation ^A
Case 1	PC	3500/1350/1400	Conceptual Inverted Tower	Air	Wet FGD/ Gypsum	Baghouse	LNB w/OFA and SCR	N/A
Case 2	PC	3500/1350/1400	Conceptual Inverted Tower	Air	Wet FGD/ Gypsum	Baghouse	LNB w/OFA and SCR	Cansolv
Case 3	PC	4250/1350/1400	Conceptual Inverted Tower	Air	Wet FGD/ Gypsum	Baghouse	LNB w/OFA and SCR	N/A
Case 4	PC	4250/1350/1400	Conceptual Inverted Tower	Air	Wet FGD/ Gypsum	Baghouse	LNB w/OFA and SCR	Cansolv
Case 5	PC	5000/1350/1400	Conceptual Inverted Tower	Air	Wet FGD/ Gypsum	Baghouse	LNB and SCR	N/A
Case 6	PC	5000/1350/1400	Conceptual Inverted Tower	Air	Wet FGD/ Gypsum	Baghouse	LNB w/OFA and SCR	Cansolv

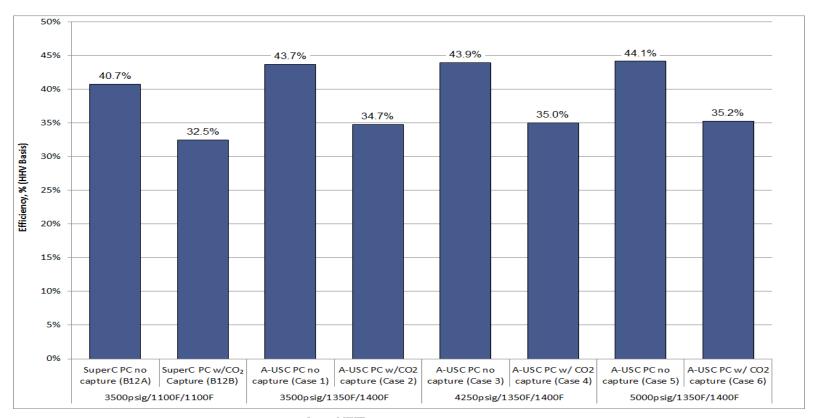

^AAll capture cases have a nominal 90 percent (90%) removal rate based on the total feedstock minus unburned carbon in ash. The rate of CO₂ capture from the flue gas in the Shell Cansolv systems varies. An explanation for the difference is provided in Report Section 2.3.2. All cases sequester the CO₂ offsite.

Block Flow Diagram - PC Plants

Study Cases 2, 4, and 6 (w/ CCS)

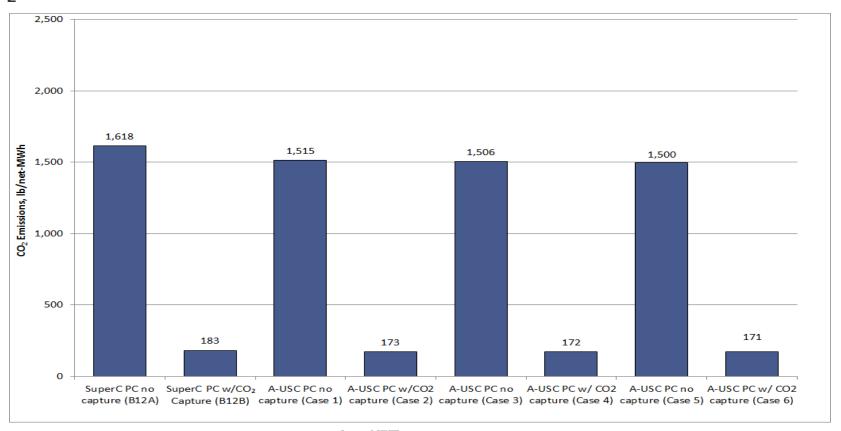
major process streams and equipment are shown.

Thermodynamic Performance and Emissions

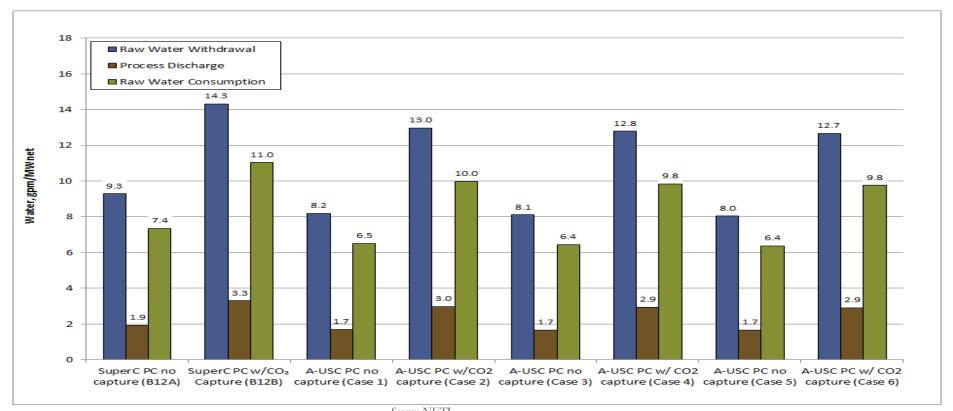

	Pulverized Coal Boiler								
	PC Supe	ercritical		PC A-USC					
Case Name	B12A	B12B	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	
PERFORMANCE									
Gross Power Output (MWe)	580	642	578	635	578	634	578	633	
Auxiliary Power Requirement (MWe)	30	91	27	85	27	84	27	84	
Net Power Output (MWe)	550	550	550	550	550	550	550	550	
Coal Flow rate (lb/hr)	395,053	495,578	368,475	463,058	366,459	458,873	364,825	456,109	
HHV Thermal Input (kW _t)	1,350,672	1,694,366	1,259,804	1,583,179	1,252,911	1,568,872	1,247,323	1,559,420	
Net Plant HHV Efficiency (%)	40.7%	32.5%	43.7%	34.7%	43.9%	35.0%	44.1%	35.2%	
Net Plant HHV Heat Rate (Btu/kWh)	8,379	10,508	7,814	9,826	7,769	9,741	7,732	9,683	
Raw Water Withdrawal, gpm	5,105	7,882	4,508	7,124	4,461	7,025	4,422	6,960	
Process Water Discharge, gpm	1,059	1,813	930	1,638	919	1,615	911	1,600	
Raw Water Consumption, gpm	4,045	6,069	3,578	5,486	3,541	5,410	3,511	5,360	
CO ₂ Capture Rate (%)	0%	90%	0%	90%	0%	90%	0%	90%	
CO₂ Emissions (lb/MMBtu)	204	20	204	20	204	20	204	20	
CO₂ Emissions (lb/MWh-gross)	1,618	183	1,515	173	1,506	172	1,500	171	
CO₂ Emissions (lb/MWh-net)	1,705	214	1,590	200	1,581	198	1,574	197	

Note: The average annual CO_2 emissions limit for new coal plants under Section 111(b) of the Clean Air Act is 1,400 lb CO_2 /MWh-gross. To accommodate start-ups, shut-downs, and part-load operation, the design emissions level will have to be some amount less than this limit.

Efficiency



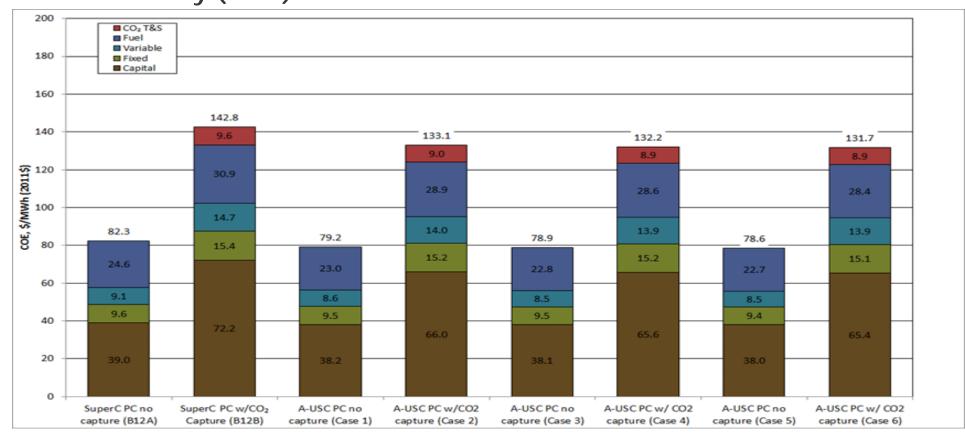
NED NATIONAL ENERGY TECHNOLOGY LABORATORY


CO₂ Emissions

NATIONAL

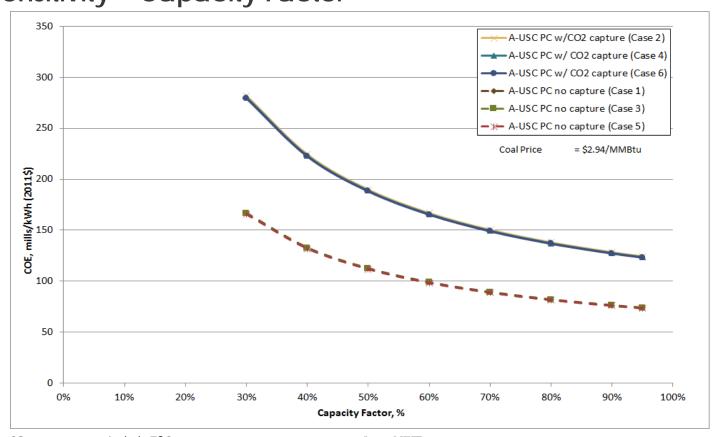
Raw Water Withdrawal and Consumption

NATIONAL ENERGY TECHNOLOGY LABORATORY

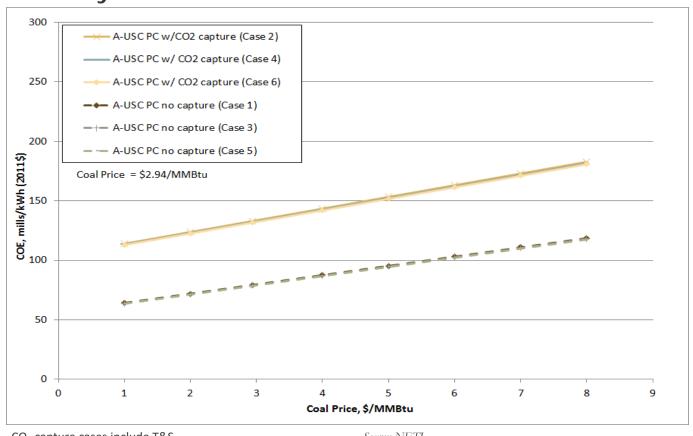

Economics

	PC Sup	ercritical		PC A-USC				
Case Name	B12A	B12B	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
			COST					
Total Plant Cost (2011\$/kW)	2,026	3,524	1,986	3,447	1,977	3,429	1,972	3,417
Bare Erected Cost	1,646	2,716	1,614	2,660	1,607	2,646	1,603	2,636
Home Office Expenses	165	263	161	258	161	256	160	256
Project Contingency	216	430	210	419	209	417	209	416
Process Contingency	0	115	0	111	0	110	0	110
Total Overnight Cost (2011\$MM)	1,379	2,384	1,350	2,329	1,345	2,316	1,341	2,308
Total Overnight Cost (2011\$/kW)	2,507	4,333	2,455	4,236	2,444	4,214	2,437	4,199
Owner's Costs	480	809	469	789	467	785	465	782
Total As-Spent Cost (2011\$/kW)	2,842	4,940	2,784	4,829	2,772	4,804	2,764	4,787
COE (\$/MWh) (excluding T&S)	82.3	133.2	79.2	124.1	78.9	123.3	78.6	122.8
Capital Costs	39.0	72.2	38.2	66.0	38.1	65.6	38.0	65.4
Fixed Costs	9.6	15.4	9.5	15.2	9.5	15.2	9.4	15.1
Variable Costs	9.1	14.7	8.6	14.0	8.5	13.9	8.5	13.9
Fuel Costs	24.6	30.9	23.0	28.9	22.8	28.6	22.7	28.4
COE (\$/MWh) (including T&S)	82.3	142.8	79.2	133.1	78.9	132.2	78.6	131.7
CO₂ T&S Costs	0.0	9.6	0.0	9.0	0.0	8.9	0.0	8.9
CO ₂ Captured Cost (excluding T&S), \$/tonne	N/A	58.2	N/A	51.1	N/A	50.7	N/A	50.4
CO ₂ Avoided Cost (including T&S), \$/tonne	N/A	89.4	N/A	74.3	N/A	73.0	N/A	72.2

Cost of Electricity (COE)

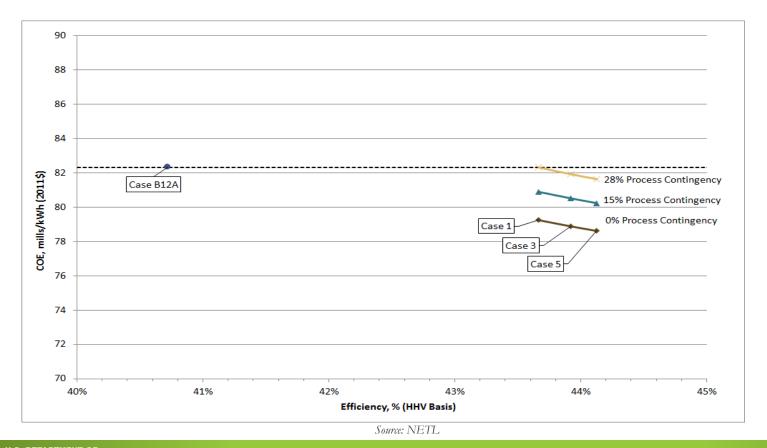


Sensitivity - Capacity Factor



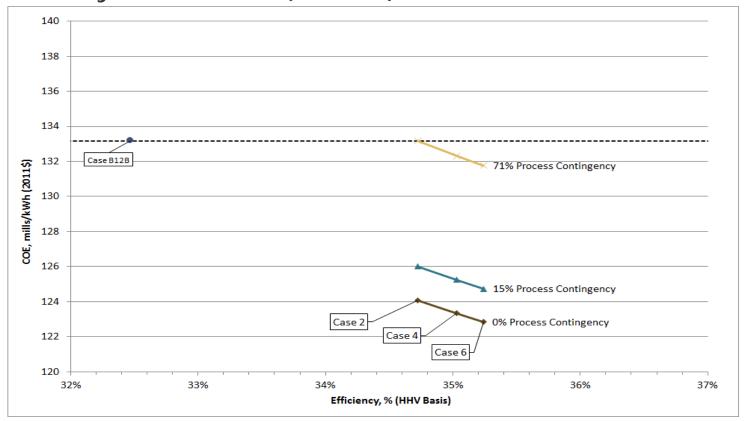
CO₂ capture cases include T&S

Sensitivity - Coal Price



CO₂ capture cases include T&S

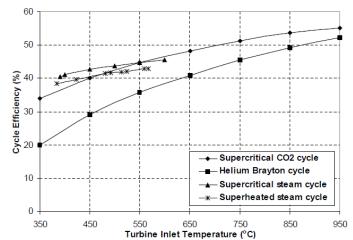
Sensitivity - Boiler Cost (w/o CCS)

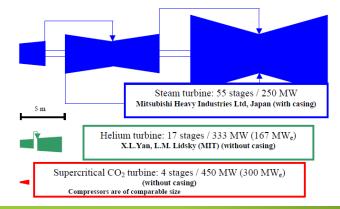


NE NATIONAL ENERGY TECHNOLOGY LABORATORY

Sensitivity - Boiler Cost (w/ CCS)

Summary


- PC plants without CCS gain 3.0% points; with CCS, 2.2% points
 - SC (3500 psig/1100°F/1100°F) to AUSC (3500 psig/1350°F/1400°F)
 - Small gains with incremental increases in main steam pressure
- PC plants without CCS show a 3.8% decrease in COE; with CCS, 6.8%
 - SC (3500 psig/1100°F/1100°F) to AUSC (3500 psig/1350°F/1400°F)
 - Small decreases with incremental increases in main steam pressure
- Primary uncertainty is downdraft inverted tower boiler
 - Cost estimation, particularly as configured for AUSC steam conditions
- Multiple approaches taken to estimate cost of steam leads
 - Very small COE effect



Overview - Indirect sCO₂ Power Cycles

- Potential higher efficiency relative to traditional fossil energy cycles
 - Recuperation of high-quality heat from the turbine exhaust
 - sCO₂ has beneficial thermodynamic properties (high density and specific heat) near the critical point
- Reduced turbomachinery equipment sizes due to higher working fluid density results in reduced capital costs
- sCO₂ is generally stable, abundant, inexpensive, non-flammable, and less corrosive than H₂O

Source: Dostal, 2004¹

Evaluation Basis – sCO₂ Plants

NATIONAL ENERGY TECHNOLOGY LABORATORY

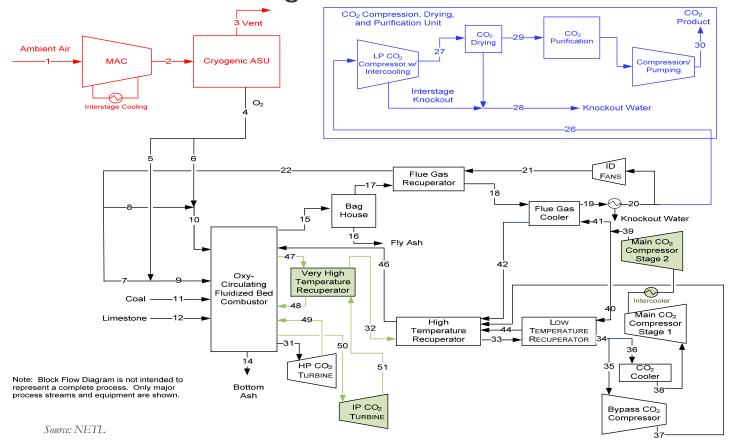
Thermodynamic Performance

- ASPEN Plus models
 - Based on NETL atmospheric pressure oxy-CFB with a supercritical Rankine cycle (B22F)
 - Evaluated an atmospheric pressure oxy-CFB with an AUSC Rankine cycle (B24F)
 - Series of cases with Rankine cycle replaced with an indirect sCO2 cycle (closed recompression Brayton cycle)
- AUSC conditions for Rankine cycle temperature/pressure
 - T HP: 1400 °F, RH: 1400 °F
 - P HP: 3500 psig
- AUSC conditions for sCO₂ temperature/pressure
 - T HP: 1400 °F, RH: 1400 °F
 - P HP: 5000 psig
- sCO₂ analyses included base, reheat, intercooling, and reheat + intercooling cases

Evaluation Basis – sCO₂ Plants

National ENERGY TECHNOLOGY LABORATORY

Economics


- Scaling from atmospheric oxy-CFB with a SC Rankine cycle for commercial technology sections, and previously-presented AUSC PC study
- SCO₂ components requiring advanced materials and/or novel designs
 - CFB
 - Modification and scaling of previous NETL study
 - Main and reheat sCO₂ leads
 - ~150 ft in length, Assumed \$40/lb for Inconel 740H pipe
 - sCO₂ turbine
 - Le Moullec paper, with adjustments
 - High- and low-temperature sCO₂ recuperators
 - Aerojet Rocketdyne, with adjustments
 - Main and bypass sCO₂ compressors
 - MAN Turbo

Block Flow Diagram - sCO2 Plants

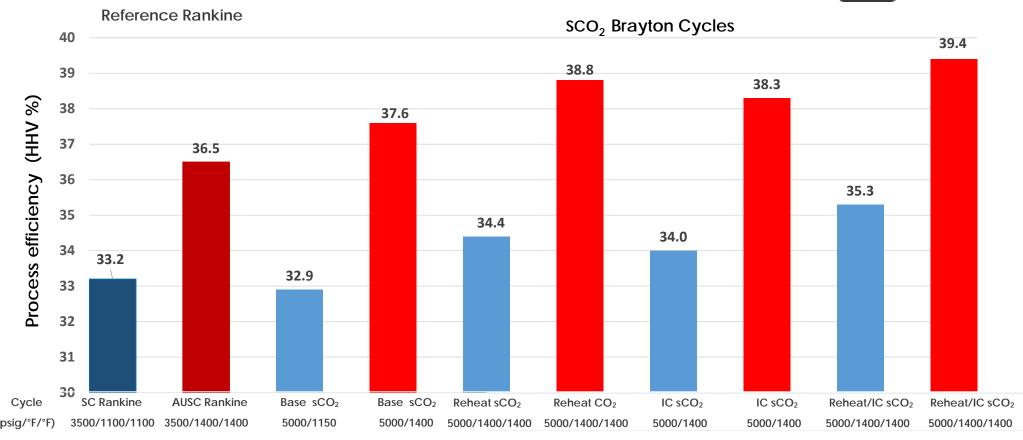
With Reheat and Intercooling

Case Matrix – sCO₂ Plants

Case (°F)	Reheat	Inter- cooling	Boiler Technology	Cycle Conditions (psig/°F/°F)	Sulfur Capture / Removal*	PM control	CO ₂ Separation / Gas Cleanup
Base (1150)	No	No	Oxy-CFB	5000/1150	Limestone injection / ash	Baghouse	Auto Refrigerated CPU
Reheat (1150)	Yes	No	Oxy-CFB	5000/1150/1150	Limestone injection / ash	Baghouse	Auto Refrigerated CPU
InterCooling (1150)	No	Yes	Oxy-CFB	5000/1150	Limestone injection / ash	Baghouse	Auto Refrigerated CPU
Reheat/InterCooling (1150)	Yes	Yes	Oxy-CFB	5000/1150/1150	Limestone injection / ash	Baghouse	Auto Refrigerated CPU
Base (1400)	No	No	Oxy-CFB	5000/1400	Limestone injection / ash	Baghouse	Auto Refrigerated CPU
Reheat (1400)	Yes	No	Oxy-CFB	5000/1400/1400	Limestone injection / ash	Baghouse	Auto Refrigerated CPU
InterCooling (1400)	No	Yes	Oxy-CFB	5000/1400	Limestone injection / ash	Baghouse	Auto Refrigerated CPU
Reheat/InterCooling) (1400)	Yes	Yes	Оху-СҒВ	5000/1400/1400	Limestone injection / ash	Baghouse	Auto Refrigerated CPU

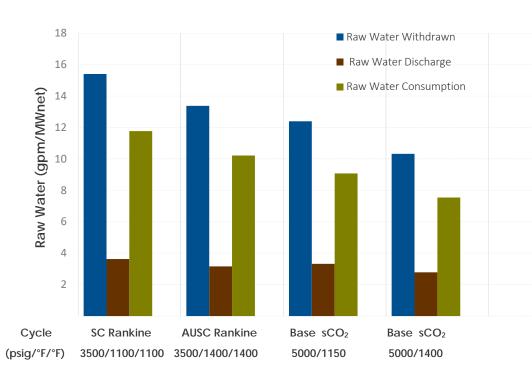
^{*} Sulfur removal is primarily in the cyclone bottom ash and baghouse fly ash, Emissions (lb/MWhgross) were set at SOx =1.0, NOx =0.7, PM=0.09, and Hg = 0.000003

Results – sCO₂ Plants



Parameter	Reference SC Rankine (B22F)	Reference AUSC Rankine (B24F)	sCO2 Rht/IC (T=1150 °F)	sCO2 Rht/IC (T=1400 °F)
CFB Coal Flow Rate (lb/hr)	483,994	441,293	456,032	408,616
Limestone Flow Rate (lb/hr)	116,535	106,123	109,898	98,472
Oxygen Flow Rate (lb/hr)	1,034,064	942,849	975,627	874,198
sCO₂ Flow Rate (lb/hr)			37,234,900	29,863,300
Steam to HP Turbine (lb/hr)	4,403,776	3,375,905		
Net Plant Efficiency (HHV %)	33.23	36.45	35.27	39.37
HHV Heat Rate (Btu/kWh)	10,267	9,876	9,673	8,668
sCO ₂ Power Cycle Efficiency (%)			49.49	53.89
sCO₂ Cycle Heat Rate (Btu/kWh)			6,894	6,332
Steam Power Cycle Efficiency (%)	48.27	51.8		
Steam Cycle Heat Rate (Btu/kWh)	7069	6,582		
Coal Thermal Input (MMBtu/hr)	5,646	5,148	5,320	4,767
Power Cycle Thermal Input (MMBtu/hr)	5,109	4,653	4,932	4,417
Fractional Thermal Input to Power Cycle	0.905	0.904	0.927	0.927
Raw Water Withdrawal (gpm)	8,466	7,355	6,816	5,676
Raw Water Discharge (gpm)	1,994	1,738	1,826	1,529
Raw Water Consumption (gpm)	6,472	5,617	4,990	4,147
Power Summary				
Steam Turbine Power Output	722,836	707,328	0	0
sCO₂ Cycle Power Output	0	0	715,305	697,587
Gross Power Output	722,836	707,328	715,305	697,587
Total Auxiliary Power Load	172,851	157,308	165,308	147,597
Net Power Output	549,985	550,020	549,997	549,990
CO ₂ Emissions (lb/MWh-gross)	119	111	53	47
CO ₂ Emissions (lb/MWh-net)	156	142	69	60

Results – sCO₂ Plants - Efficiency



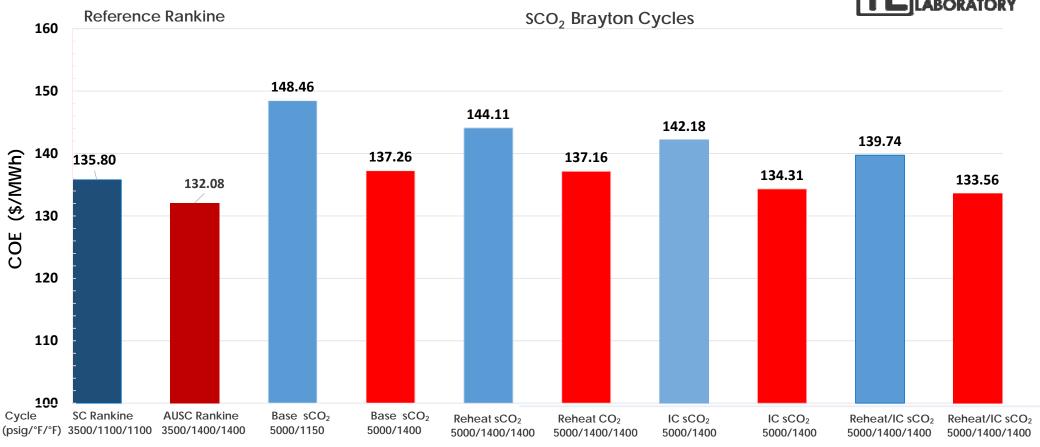
Results – sCO₂ Plants

Raw Water: Withdrawal, Discharge and Consumption

Cycle	Reference SC Rankine	Reference AUSC Rankine	sCO2 Rht/IC (T=1150 °F)	sCO2 Rht/IC (T=1400 °F)	
	gp	gpm			
Raw Water Withdrawal	8,466	7,355	6,816	5,676	
Raw Water Discharge	1,994	1,738	1,826	1,529	
Raw Water Consumption	6,472	5,617	4,990	4,147	
Net Power (MW)	550	550	550	550	
		gpm/	MWnet		
Raw Water Withdrawal	15.4	13.4	12.4	10.3	
Raw Water Discharge	3.6	3.2	3.3	2.8	
Raw Water Consumption	11.8	10.2	9.1	7.5	

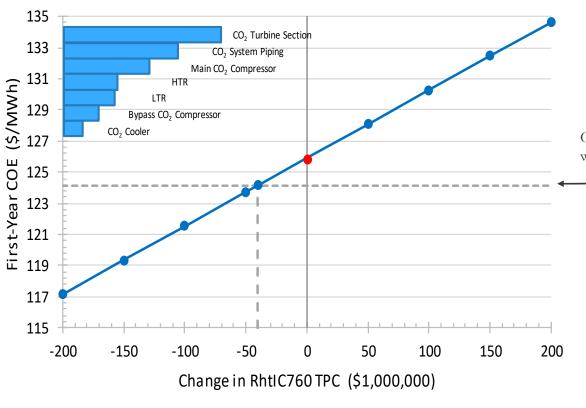
Results – sCO₂ Plants

Economics



Cycle	OXY-CFB	Rankine	OXY-CFB sC	O2 (Brayton)					
Case Name	B22F	B24F	sCO2 Reheat/IC (T=1150 °F)	sCO2 Reheat/IC (T=1400 °F)					
COST									
Total Plant Cost (2011\$/kW)	3,337	3,363	3800	3601					
Bare Erected Cost	2,666	2,695	3017	2864					
Home Office Expenses	245	247	282	268					
Project Contingency	371	369	443	417					
Process Contingency	55	51	58	52					
Total Overnight Cost (2011\$MM)	2,255	2,270	2561.35	2561					
Total Overnight Cost (2011\$/kW)	4,101	4,127	4657	4418					
Owner's Costs	501	505							
Total As-Spent Cost (2011\$/kW)	4,675	4,705	5309	5036					
COE (\$/MWh) (excluding T&S)	127.2	124.2	139.3	129.2					
Capital Costs	68.3	68.7	77.6	73.6					
Fixed Costs	14.8	14.9	16.6	15.8					
Variable Costs	13.8	12.9	14.8	13.2					
Fuel Costs	30.2	27.5	30.5	26.7					
COE (\$/MWh) (including T&S)	135.8	132.1	148.5	137.3					
CO ₂ T&S Costs	8.7	7.9	9.1	8.0					

Results – sCO₂ Plants Cost of Electricity (with T&S)



Results – sCO₂ Plants

Sensitivity - TPC for RhtIC760 Case

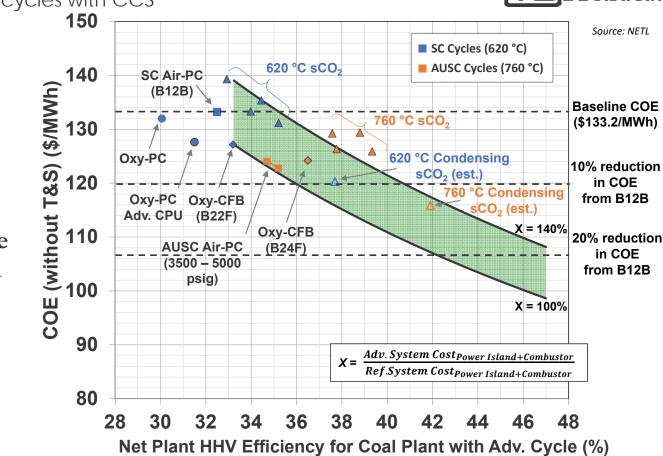
Case B24F - Atm. Oxy-CFB w/ AUSC Rankine Cycle —

- Considerable uncertainty with capital cost estimation for certain sCO₂ plant components.
- Blue bars represent the estimated TPC for major plant components.
- A TPC reduction of ~\$40MM achieves COE parity with a comparable atm. Oxy-CFB AUSC Rankine plant.

COE excludes T&S Source: NETL

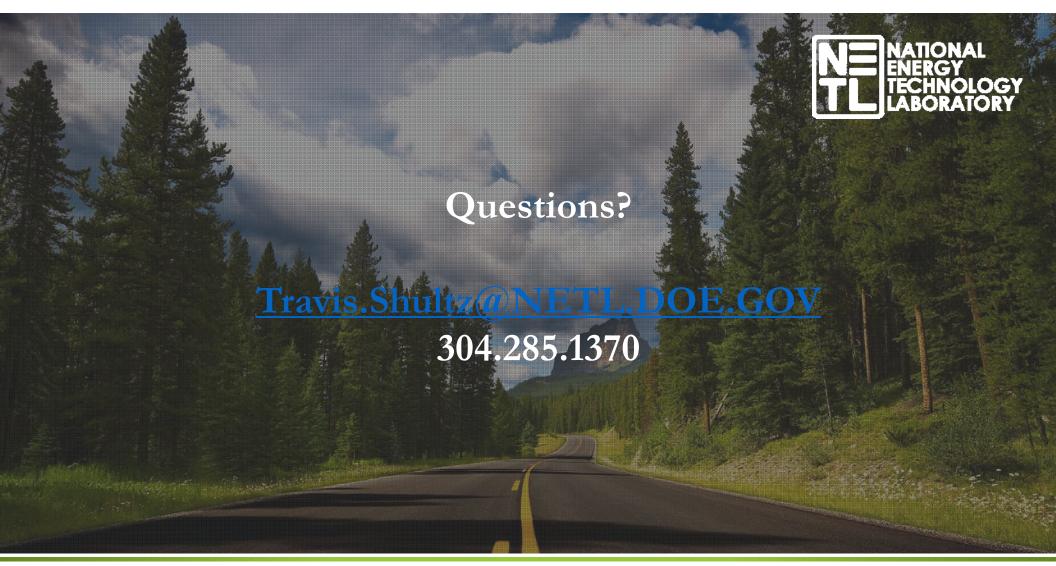
Results – sCO₂ Plants

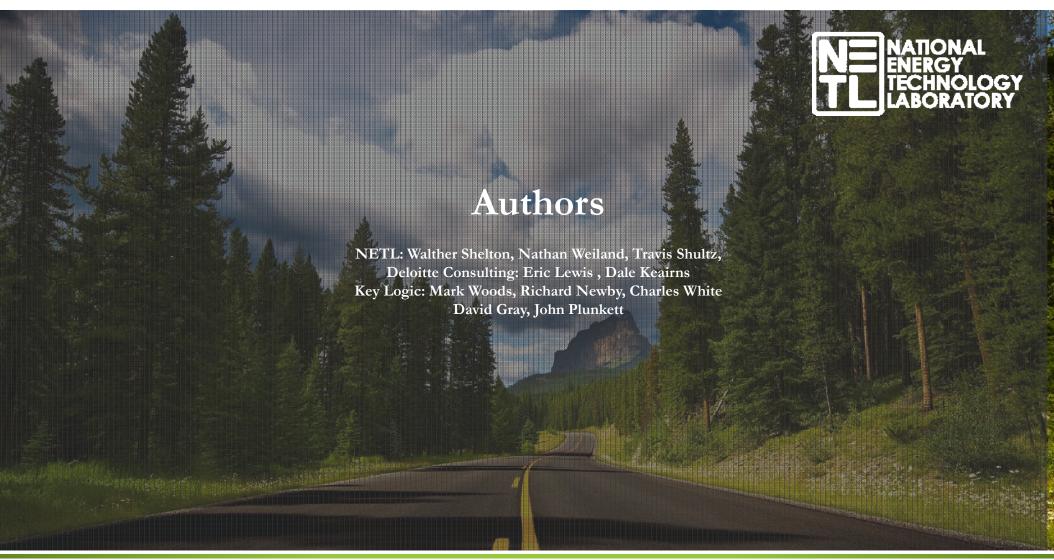
Summary


- The AUSC sCO₂ cycle atm. Oxy-CFB plant with reheat and intercooling provides a 2.9% point improvement over the comparable AUSC Rankine cycle atm. Oxy-CFB plant
 - 39.4% HHV vs. 36.5% HHV
- However, COE is equivalent between these cases
 - \$124/MWh (Rankine) vs. \$126/MWh (sCO₂)
 - Higher sCO₂ COE primarily due to 8-12x sCO₂ mass flow relative to steam (primary and reheat leads)
 - High- and low-temperature recuperators, and multi-stage sCO₂ compressors (vs. feedwater pumps in a Rankine cycle) also contribute
- Alternative sCO2 cycle configurations are under development
- Large uncertainty in commercial-scale sCO_2 component costs warrant further study

Cost and Efficiency Summary

Steam Rankine and Indirect sCO₂ cycles with CCS


- Reference: Supercritical Oxy-combustion CFB with Auto-refrigerated CPU (Case B22F)
 - \$0/tonne CO₂ Revenue
 - 550 MWe
- COE reductions are relative to an air-fired, supercritical PC coal plant with CCS (Case B12B)
- Ongoing work assessing condensing CO₂ cycles



NATIONAL

TECHNOLOGY

